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Abstract—We present two results on attitude estimation using vector
and rate gyro measurements. The first result concerns an observer
previously presented by Hamel, Mahony, and Pflimlin, with proven
stability results when (i) the reference vectors are stationary; or (ii) the
gyro measurements are unbiased. We prove semiglobal stability without
either of these assumptions when a parameter projection is added, and
convergence from all initial attitudes when using a resetting strategy.
The second result is an algorithm for estimation of bias in the body-fixed
vector measurements, which is analyzed in combination with the attitude
and gyro bias observer.

Index Terms—Navigation, estimation

I. INTRODUCTION

When determining the attitude of an object with respect to a
reference frame, it is common to use a set of vectors measured in a
body-fixed coordinate frame—using sensors such as magnetometers,
accelerometers, or sun sensors—and a corresponding set of reference
vectors in the reference frame. The attitude can be resolved by
comparing these vectors using a number of different algorithms,
such as TRIAD and QUEST, provided at least two non-parallel vector
measurements are available (see [1], [2]). Vector measurements are
typically affected by noise, which is particularly significant at high
frequencies. It is therefore common to combine vector measurements
with measurements from rate gyroscopes, which complement the vec-
tor measurements by providing high-frequency attitude information.

Most commonly, vector and gyro measurements are integrated
using an extended Kalman filter (EKF). An overview of early EKFs
is given by Lefferts, Markley, and Shuster [3], whereas Crassidis,
Markley, and Cheng [4] survey more recent results using EKFs as well
as other estimation techniques. Integrated inertial (INS) and satellite
(GNSS) navigation systems have also been studied for several decades
and are typically based on EKFs [5], [6]. Such systems implicitly
determine the attitude by matching the accelerometer vector with
changes in the velocity vector. Measurements are also affected by
other errors, such as bias, alignment, and scale-factor errors. These
are often counteracted by including additional parameters in the
estimation algorithm.

One alternative to the EKF is to construct nonlinear observers
with explicitly proven stability properties. Such observers typically
have a smaller computational footprint than the EKF, and they are
therefore of particular interest as low-cost navigation equipment
becomes available in a wide range of products, such as cell phones,
cars, and small unmanned vehicles. The first observer of this type was
presented by Salcudean [7]. It was later extended by Vik and Fossen
[8] by adding gyro bias and linear velocity estimation in the context
of GPS/INS integration. Thienel and Sanner [9] improved the stability
analysis by deriving a uniform complete observability argument that
guarantees exponentially vanishing estimation errors (including bias).
The nonlinear observers based on Salcudean’s work assume that
the attitude is algebraically resolved in a separate subsystem and
provided as a measurement to the observer. A drawback of this
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assumption is that the noise characteristics of the resolved attitude
may differ significantly from the characteristics of the measurements
used to produce it. For example, the influence of vector noise varies
depending on how well-conditioned the attitude resolution problem
is at any given point in time. The separate attitude resolution also
adds computational complexity (see also discussion in [10]).

More recently, Hamel and Mahony [11] and Mahony, Hamel, and
Pflimlin [10] have proposed an observer that does not rely on separate
attitude resolution, but instead makes use of vector measurements
directly. Their observer includes estimation of gyro bias and is rigor-
ously analyzed with respect to stability. An underlying assumption,
however, is that the reference vectors are stationary. Stability in the
case of time-varying reference vectors is studied in a later paper by
Mahony, Hamel, Trumpf, and Lageman [12] and in a recent paper
by Hua [13], albeit without considering gyro bias estimation. It is
proven that the observer without bias estimation can handle time-
varying reference vectors as well. Moreover, Hua presents algorithms
for using the derivative of GNSS velocity to form a reference vector
without explicit differentiation.

Mahony et al. [12] also considered attitude estimation using a
single vector measurement, which is sufficient if a persistency-of-
excitation (PE) condition is satisfied. This problem has previously
been considered by Kinsey and Whitcomb [14] and Lee, Leok,
McClamroch, and Sanyal [15], also without considering gyro bias.
Vasconcelos, Silvestre, and Oliveira [16] have considered simultane-
ous attitude and gyro bias estimation by realigning the measurements
using, for example, a singular value decomposition based on the
matrix of reference vectors. Globally exponentially stable attitude
estimation based on time-varying reference vectors—by estimating a
full 3×3 rotation matrix that is not confined to SO(3)—has recently
been considered by Batista, Silvestre, and Oliveira [17], [18] and
Grip, Saberi, and Johansen [19], [20], albeit without bias estimation.

A. Goals and Contributions

The ability to handle time-varying reference vectors is an important
one, in particular, when accelerometers are used to provide vector
measurements. In applications with slow dynamics, the gravity vector
can be used as a stationary reference, but in general the true reference
vector is time-varying. Some compensation for vehicle acceleration
is possible by using, for example, additional measurements, a vehicle
model, low-pass filtering, or compensation of Coriolis terms. On
the other hand, if GNSS measurements are available, then the actual
reference vector is implicitly available via the derivative of GNSS

velocity. This scenario is the main motivation for this note.
We focus on two specific problems regarding attitude and bias

estimation. First, we consider the observer presented by Hamel and
Mahony [11] and Mahony et al. [10]. This observer has proven stabil-
ity properties when either (i) the reference vectors are stationary; or
(ii) the reference vectors are time-varying but the gyro measurements
are bias-free. What is not considered by Hamel and Mahony [11],
Mahony et al. [10], [12], or Hua [13] is the case when the reference
vectors are time-varying and the gyro measurements are biased. By
adding a parameter projection to the bias estimation, we show that
the observer is applicable in this case as well; in particular, we prove
semiglobal exponential stability, and we show how attractivity from
arbitrary initial attitudes can be guaranteed by an additional resetting
scheme.

In addition to gyro bias, bias in the vector measurements can con-
stitute a significant problem. For example, low-cost accelerometers
typically have a large bias; on the other hand, the corresponding
reference vector, derived using the gravity vector and possibly the
derivative of GNSS velocity, is typically subject to a very small bias.
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Motivated by this situation, we present an exponentially converging
algorithm for estimating bias in the body-fixed vector measurement
by using a bias-free reference vector.

A conference version of this paper, without the results based on
resetting and physically realistic examples, was recently presented at
the IFAC World Congress [21].

II. PRELIMINARIES

Any rotation can be described by a unit-length rotation axis
k ∈ R3 and a rotation angle β . The corresponding unit quaternion
is defined as q = [s,rT]T = [cos(β/2),kT sin(β/2)]T, which implies
‖q‖2 = s2 + ‖r‖2 = 1. We shall use both quaternions and rotation
matrices R ∈ SO(3) to represent rotations. The two representations
are related by R = Rq(s,r) := I+2sS(r)+2S(r)2, where S(x) denotes
the skew-symmetric matrix such that S(x)y = x × y. We denote
by ‖ · ‖ the Euclidean norm for vectors in Rn and the Frobenius
norm for matrices in Rm×m. For (X ,x) ∈ Rm×m ×Rn, we define
‖(X ,x)‖=

√
‖X‖2 +‖x‖2. Throughout the note, we assume that all

dynamical systems are initialized at time t = 0. For time-varying
quantities, we usually omit the time argument.

III. PROBLEM FORMULATION

Let R∈SO(3) denote the rotation matrix from the body-fixed frame
to an inertial reference frame. The rotation matrix behaves according
to the kinematic equation

Ṙ = RS(ω), (1)

where ω is the angular velocity in body-fixed coordinates, bounded
by ‖ω‖ ≤ ω̄ . A measurement ωm = ω + bg is available, where bg
represents gyro bias. We assume that bg is constant and belongs to
an a priori known, compact, convex set Bg ⊂ R3. We furthermore
assume availability of n vectors vb

j , j ∈ 1, . . . ,n, in the body-fixed
frame, and corresponding reference vectors vi

j = Rvb
j in the inertial

frame. The reference vectors are presumed to be time-varying but
bounded away from zero; that is ‖vi

j‖ ≥ c ≥ 0. For simplicity we
introduce normalized versions of these vectors as v̄b

j = vb
j/‖vb

j‖ and
v̄i

j = vi
j/‖vi

j‖. As in other places in the literature [12], [13], we ensure
observability through an additional assumption that requires there to
always be two normalized reference vectors with the angle between
them bounded away from 0◦ and 180◦.

Assumption 1: There exists a constant cobs > 0 such that, for each
t ≥ 0, there are indices j,k ∈ 1, . . . ,n such that ‖v̄i

j× v̄i
k‖ ≥ cobs.

The estimate of the rotation matrix will be denoted by R̂ ∈ SO(3),
and the estimation error will be represented by R̃ := RR̂T ∈ SO(3).
The goal is to ensure that R̃ → I as t → ∞, which implies that
R̂ asymptotically represents the same rotation as R. The attitude
error will also be represented by a unit quaternion q̃ = [s̃, r̃T]T

corresponding to R̃. Note that R̃ = I is equivalent to |s̃|= 1 and r̃ = 0.
It is also useful to note that s̃ = 0 corresponds to a rotation error of
180◦ about some axis (i.e., the maximal error rotation angle).

IV. PREVIOUS RESULTS

Hamel and Mahony [11] and Mahony et al. [10] present the
following observer for estimating R and bg:

˙̂R = R̂S(ωm− b̂g +σ), (2a)
˙̂bg =−kIσ , (2b)

where σ =
n

∑
j=1

k j v̄b
j × R̂Tv̄i

j,

with k j ≥ kP > 0, j = 1, . . . ,n, as well as kI > 0, representing observer
gains. Under the assumption that the reference vectors v̄i

j, j = 1, . . . ,n,

are stationary, it is proven that the observer error dynamics is locally
exponentially stable and that the observer states converge to the true
states for almost all initial conditions. If the reference vectors v̄i

j,
j = 1, . . . ,n, are time-varying, then convergence can still be proven if
gyro bias is disregarded (i.e., ωm =ω). This can be done, for example,
based on the analysis of Hua [13], as outlined in the remainder of
this section.

The dynamics of R̃ is described by ˙̃R = ṘR̂T+R ˙̂RT = RS(ω)R̂T−
RS(ωm+σ)R̂T =−RS(σ)R̂T =−S(Rσ)R̃, where S(x)T =−S(x) and
RS(x)RT = S(Rx) have been used. Note that R̃ is confined to SO(3).
The dynamics described by a corresponding unit quaternion is [22]

˙̃s =
1
2

r̃TRσ , (3a)

˙̃r =−1
2
(s̃I−S(r̃))Rσ . (3b)

The unit quaternion dynamics is confined to the unit sphere; that is,
s̃2 +‖r̃‖2 = 1. Note that

Rσ =
n

∑
j=1

k jRS(v̄b
j)R̂

Tv̄i
j

=
n

∑
j=1

k jS(Rv̄b
j)R̃v̄i

j =
n

∑
j=1

k jS(v̄i
j)(I +2s̃S(r̃)+2S(r̃)2)v̄i

j

= 2
n

∑
j=1

k jS(v̄i
j)(s̃S(r̃)+S(r̃)2)v̄i

j.

By defining the Lyapunov-like function V (s̃) = 1− s̃2 = ‖r̃‖2, one
obtains the derivative

V̇ =−2s̃r̃T
n

∑
j=1

k jS(v̄i
j)(s̃S(r̃)+S(r̃)2)v̄i

j

=−2s̃
n

∑
j=1

k j(r̃× v̄i
j)
T(s̃I +S(r̃))(r̃× v̄i

j)≤−2kP

n

∑
j=1

s̃2‖r̃× v̄i
j‖2,

where we have used the identity yTS(x)y = 0. Using the inequality
‖r̃× v̄i

j‖2 + ‖r̃× v̄i
k‖2 ≥ 1

2‖r̃‖2‖v̄i
j × v̄i

k‖2 (see [13]) together with
Assumption 1 yields V̇ ≤−kPc2

obss̃
2‖r̃‖2 =−kPc2

obss̃
2(1− s̃2). Since

V̇ is negative whenever s̃ 6= 0 and |s̃| 6= 1, it is straightforward to
show that for any initial condition satisfying R̃(0)∈{Rq(s̃, r̃) | |s̃|> 0}
(i.e., the initial rotation error is strictly less than 180◦), |s̃| increases
monotonically such that |s̃| → 1 (implying ‖r̃‖→ 0 and R̃→ I).

V. ATTITUDE AND GYRO BIAS ESTIMATION WITH

TIME-VARYING REFERENCE VECTORS

We now build on the analysis outlined in the previous section to
show that the observer, including bias estimation, is applicable even
if the reference vectors are time-varying. The only modification that
we make to (2) is to add a parameter projection of the type shown
in the Appendix of this note (recalled from [23, App. E]), which
ensures that b̂g remains within a compact, convex set B̂g ⊃ Bg,
defined slightly larger than Bg. Accordingly, we redefine (2b) as

˙̂bg = Proj(b̂g,−kIσ). (4)

Defining the bias estimation error b̃g = bg − b̂g, we obtain the
complete error dynamics

˙̃R =−S(Rb̃g +Rσ)R̃, (5a)
˙̃bg =−Proj(b̂g,−kIσ). (5b)

We define a parameterized set R̃(ε) = {Rq(s̃, r̃) | |s̃| ≥ ε}, where
0 < ε < 1.

Theorem 1: Consider the dynamics of the error (R̃, b̃g) ∈ SO(3)×
R3, described by (5). For each 0 < ε < 1, there exists a k̄P > 0 such
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that, for all kP > k̄P, the equilibrium point (I,0) is exponentially stable
with all initial conditions such that R̃(0) ∈ R̃(ε) and b̂g(0) ∈ B̂g
contained in the region of attraction.

Proof: Let M be a bound on ‖b̃g‖ on the compact set B̃g =
{bg− b̂g | bg ∈Bg, b̂g ∈ B̂g}. We start by defining ` > 0 such that
` < min{1/(2kI),c2

obsε
2/(12nM +8kIn)}. Next, define a = c2

obsε
2−

`(12nM + 8kIn) (note that a > 0) and let k̄P = max{M/(c2
obsε

2(1−
ε2)),((1+ 2`ω̄)2 + 4`2M2ε2)/(4a`ε2)}. Using unit quaternions the
error dynamics becomes

˙̃s =
1
2

r̃TR(b̃g +σ),

˙̃r =−1
2
(s̃I−S(r̃))R(b̃g +σ),

˙̃bg =−Proj(b̂g,−kIσ).

We know that b̂g(0) ∈ B̂g. Thus, for all all t ≥ 0, b̂g(t) ∈ B̂g, and
hence b̃g(t) ∈ B̃g. Consider the derivative of V defined in Section
IV:

V̇ ≤−s̃r̃TRb̃g− kPc2
obss̃

2(1− s̃2)≤M− kPc2
obss̃

2(1− s̃2).

Using the property kP > k̄P ≥ M/(c2
obsε

2(1− ε2)), we find that for
|s̃|= ε , we have V̇ ≤M−kPc2

obsε
2(1− ε̃2)<M−M = 0. This implies

that V is strictly decreasing whenever |s̃|= ε , which in turn implies
that |s̃| is strictly increasing. It follows from |s̃(0)| ≥ ε and continuity
of the solutions that |s̃| can never become smaller than ε , and we
therefore assume |s̃| ≥ ε in the remainder of the analysis.

Consider the Lyapunov-like function

W (r̃, s̃, b̃g) =V (s̃)+2`s̃r̃TRb̃g +
`

2kI
b̃Tg b̃g. (6)

We have W ≥ ‖r̃‖2 − 2`‖r̃‖‖b̃g‖+ `
2kI
‖b̃g‖2, where we have used

the fact that |s̃| ≤ 1. This quadratic expression is positive definite
with respect to r̃ and b̃g due to the bound on ` described above.
It follows that there exist positive constants α1 and α2 such that
α1‖(r̃, b̃g)‖2 ≤W ≤ α2‖(r̃, b̃g)‖2. For the time derivative of W we
calculate

Ẇ ≤−s̃r̃TRb̃g− kPc2
obss̃

2(1− s̃2)+ `r̃TRb̃gr̃TRb̃g

+ `r̃TRσ r̃TRb̃g− `s̃2b̃Tg b̃g

− `σTRT(s̃2I + s̃S(r̃))Rb̃g +2`s̃r̃TRS(ω)b̃g

−2`s̃r̃TRProj(b̂g,−kIσ)− `

kI
b̃Tg Proj(b̂g,−kIσ)

≤ ‖r̃‖‖b̃g‖− kPcobss̃
2‖r̃‖2 + `‖r̃‖2‖b̃g‖2− `s̃2‖b̃g‖2

− `σTRT((1−‖r̃‖2)I + s̃S(r̃)− r̃r̃T)Rb̃g

+2`ω̄‖r̃‖‖b̃g‖+2`kI‖r̃‖‖σ‖+ `σTb̃g

= ‖r̃‖‖b̃g‖− kPcobss̃
2‖r̃‖2 + `‖r̃‖2‖b̃g‖2− `s̃2‖b̃g‖2

− `σTRT(−‖r̃‖2I + s̃S(r̃)− r̃r̃T)Rb̃g

+2`ω̄‖r̃‖‖b̃g‖+2`kI‖r̃‖‖σ‖,
where we have used the properties that ‖Proj(b̂g,−kIσ)‖ ≤ kI‖σ‖
and −b̃Tg Proj(b̂g,−kIσ)≤ kI b̃Tg σ [23, Lemma E.1]. Note that ‖σ‖=
‖Rσ‖ = 2

∥∥∥∑
n
j=1 k jS(v̄i

j)(s̃S(r̃)+S(r̃)2)v̄i
j

∥∥∥ ≤ 4kPn‖r̃‖. Using this
bound, as well as |s̃| ≥ ε , we obtain

Ẇ ≤ ‖r̃‖‖b̃g‖− kPc2
obsε

2‖r̃‖2 + `‖r̃‖2‖b̃g‖2− `ε2‖b̃g‖2

+4`kPn‖r̃‖(2‖r̃‖2 +‖r̃‖)‖b̃g‖+2`ω̄‖r̃‖‖b̃g‖+8`kIkPn‖r̃‖2

≤ ‖r̃‖‖b̃g‖− kPc2
obsε

2‖r̃‖2 + `M2‖r̃‖2− `ε2‖b̃g‖2

+12`kPnM‖r̃‖2 +2`ω̄‖r̃‖‖b̃g‖+8`kIkPn‖r̃‖2

=−
[
‖r̃‖ ‖b̃g‖

][ kPa− `M2 − 1
2 (1+2`ω̄)

− 1
2 (1+2`ω̄) `ε2

][
‖r̃‖
‖b̃g‖

]
.

Inspecting the first-order principal minor of the above
matrix, we have kPa − `M2 > k̄Pa − `M2 ≥ ((1 + 2`ω̄)2 +
4`2M2ε2))a/(4a`ε2) − `M2 ≥ 4`2M2ε2a/(4a`ε2) − `M2 =
`M2 − `M2 = 0. For the second-order principal minor, we have
(kPa− `M2)`ε2− 1

4 (1+ 2`ω̄)2 > (k̄Pa− `M2)`ε2− 1
4 (1+ 2`ω̄)2 ≥

(((1 + 2`ω̄)2 + 4`2M2ε2)a/(4a`ε2) − `M2)`ε2 − 1
4 (1 + 2`ω̄)2 =

((1 + 2`ω̄)2a/(4a`ε2) + `M2 − `M2)`ε2 − 1
4 (1 + 2`ω̄)2 =

1
4 (1 + 2`ω̄)2 − 1

4 (1 + 2`ω̄)2 = 0. Since both principal minors
are positive, the matrix is positive definite, which implies
that there exists an α3 > 0 such that Ẇ ≤ −α3‖(r̃, b̃g)‖2.
Hence, there is an α > 0 such that Ẇ ≤ −αW . Using the
comparison lemma [24, Lemma 3.4], we conclude that there
exist positive constants K and λ such that for all t ≥ 0,
‖(r̃(t), b̃g(t))‖ ≤ Ke−λ t‖(r̃(0), b̃g(0))‖. Using ‖I− R̃‖ =

√
8‖r̃‖, we

therefore have ‖(I− R̃(t), b̃g(t))‖ ≤
√

8Ke−λ t‖(I− R̃(0), b̃g(0))‖.
Theorem 1 specifies that the initial error rotation angle must be

smaller than 180◦ by a certain margin, which can be arbitrarily
reduced by increasing kP. The bias estimate must be initialized from
the set B̂g, which can be chosen arbitrarily large. The stability result
is therefore best characterized as semiglobal (in the same way as
[13, Th. 1]), which is slightly weaker than the almost-global result
for stationary reference vectors [10].

According to the stability result, there is a possibility of the
attitude estimate becoming stuck if the initial error angle is close to
180◦. Although simulation results indicate that this is not a practical
problem, we nevertheless wish to guarantee convergence for all initial
attitudes. One way to achieve this is to check the objective function
J(R̂) = 1

2 ∑
n
j=1 ‖v̄b

j − R̂Tv̄i
j‖2, proposed by Wahba [1], periodically at

times τ,2τ,3τ, . . . , where τ > 0 is a design variable. If J(R̂) > δ ,
where δ > 0 is another design variable, then R̂ is reset to the attitude
R∗, which is computed based on the vector measurements by using an
algorithm such as TRIAD or QUEST (theoretically yielding R∗ = R).

Theorem 2: Suppose that the semiglobally stabilizing observer is
tuned according to Theorem 1, such that, for some choice of 0 <
ε < 1, all initial conditions with R̃(0) ∈ R̃(ε) and b̂g(0) ∈ B̂g are
contained in the region of attraction. Consider the dynamics of the
error (R̃, b̃g) ∈ SO(3)×R3 when resetting is applied. For each δ <
δ ∗ := c2

obs(1− ε2), there is a τ∗(δ )> 0, such that if τ is chosen so
that τ ≥ τ∗(δ ), then for all initial conditions such that R̂(0) ∈ SO(3)
and b̂g(0) ∈ B̂g, limt→∞ ‖((I− R̃), b̃g)‖= 0.

Proof: The bias estimate remains bounded due to the parameter
projection, and R̂ remains bounded as it is confined to SO(3). We
may write

J(R̂) =
1
2

n

∑
j=1
‖v̄i

j− R̃v̄i
j‖2 =

n

∑
j=1
‖v̄i

j‖2− (v̄i
j)
TR̃v̄i

j

=
n

∑
j=1
−(v̄i

j)
T(2s̃S(r̃)+2S(r̃)2)v̄i

j

=
n

∑
j=1

2‖r̃× v̄i
j‖2 ≥ c2

obs‖r̃‖2 = c2
obs(1− s̃2).

Thus, if |s̃|< ε , then J(R̂)> c2
obs(1− ε2)> δ . We also have J(R̂)≤

2n‖r̃‖2.

Consider the state of the observer at time kτ for some k ∈ 1,2, . . .,
and suppose first that J(R̂(kτ)) ≤ δ , so that no reset occurs at this
time. By the above calculation, this implies that |s̃(kτ)| ≥ ε; that
is, the state of the observer is within the region of attraction from
Theorem 1, and hence the error will converge exponentially until the
time (k+ 1)τ . In particular, from the proof of Theorem 1, we may
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write

‖(r̃((k+1)τ), b̃g((k+1)τ))‖2 ≤ K2e−2λτ‖(r̃(kτ), b̃g(kτ))‖2

≤ K2e−2λτ∗(δ )(1− ε
2 +M2).

Let τ∗(δ ) be chosen large enough that K2e−2λτ∗(δ )(1− ε2 +M2)<
δ/(2n). Then ‖r̃((k+1)τ)‖2 < δ/(2n), which implies by the above
calculations that J(R̂((k + 1)τ) < δ . Thus, no reset occurs at time
(k+1)τ . By induction, no resets occur at any future point in time and
the estimation error converges exponentially as indicated by Theorem
1. Suppose next that J(R̂(kτ))> δ . In this case a reset occurs, so that
after the reset, R̂ = R∗ = R and |s̃| = 1. By the above analysis, the
system now converges exponentially without any further resets.

As is clear from the proof of Theorem 2, the state of the observer
is only reset if the estimates do not converge for some extended
period of time. Thus, the resetting strategy should be viewed as
an insurance policy against a lack of convergence—during normal
operation, the observer works in the same way as the original observer
without resetting, and it benefits from the complementary information
contained in the vector observations and gyro measurements.

VI. ESTIMATION OF VECTOR BIAS

A potentially significant problem is the presence of bias in the
vector measurements. We briefly consider a single biased vector
measurement vb

m = vb + bv in the body-fixed frame, where vb is
the true value of the vector and bv is a constant bias. By using
the unbiased reference vector measurement vi

m = vi = Rvb, we shall
construct an exponentially convergent estimator for bv. The main trick
is to compare the norm of vb

m and vi
m, which should be equal if vb

m is
bias-free. This technique has previously been used to construct several
different estimators of magnetometer bias (see [25] for a survey).

Defining y = ‖vi
m‖2 − ‖vb

m‖2 and p = ‖bv‖2, and noting that
‖vi‖ = ‖Rvb‖ = ‖vb‖, it is easily confirmed that y = p− 2(vb

m)
Tbv.

Defining the constant vector θ = [p,bTv ]
T and the time-varying vector

φ = [1,−2vb
m
T
]T, we have y = φTθ . Based on this model, we may

construct an over-parameterized observer
˙̂
θ = Γφ(y−φ

T
θ̂), (7)

where Γ is a symmetric, positive-definite gain matrix. Defining the
error variable θ̃ = θ − θ̂ , we can state the following result.

Theorem 3: Suppose that there exist ε > 0 and T > 0 such that,
for each t ≥ 0,

∫ t+T
t φ(τ)φT(τ)dτ ≥ εI. Then the origin is a globally

exponentially stable equilibrium point for the error dynamics ˙̃
θ =

−ΓφφTθ̃ .
Proof: The proof can be completed, for example, by using

the Lyapunov function V = 1
2 θ̃T

(
Γ−1− `

∫
∞

t et−τ φ(τ)φ(τ)T dτ
)

θ̃ ,
where ` > 0 is a small number, following previous results on
parameter estimation (see, e.g., [26, Proposition 4]).

The requirement on φ in Theorem 3 is a standard PE condition
that can be interpreted as requiring the components of φ to behave
in a linearly independent manner when considered over sufficiently
long time intervals. Since one of the components of φ is the constant
1, this means that the three components of vb

m must be non-constant
and vary independently of each other. Whether the PE requirement is
reasonable or not depends on the application.

Remark 1: The model y = φTθ is a linear regression model with
output y, regressor φ , and parameter vector θ . Several standard esti-
mation methods can therefore be applied. For example, by introducing
a time-varying gain Γ satisfying Γ̇ = αΓ−ΓφφTΓ, with α ≥ 0, we
obtain the recursive least-squares estimate of θ with forgetting factor
α [27, Th. 2.5].

The vector bias estimation can be combined with the attitude and
gyro bias estimation, resulting in a cascaded structure. One of the

previously available vectors vb
j is now replaced by a bias-corrected

vector vb
j + b jv− b̂ jv = vb

j + b̃ jv. Since this vector may be close to
zero when b̃ jv is large, we replace the normalized vector v̄b

j in the
observer with v̄b∗

j := (vb
j + b̃ jv)/max{‖vb

j + b̃ jv‖,η}, where 0< η ≤ c
is a small number. It is also possible for the algebraic solution used
in the resetting strategy to be ill-defined when b̃ jv is large, despite
Assumption 1 holding for the unbiased vectors; if this is the case, a
reset is simply not performed. Both of these issues vanish after an
initial transient, because b̃ jv converges to zero. In order to analyze the
behavior of the overall system, we need to assume that the algebraic
solution R∗ ∈ SO(3) is locally continuous, uniformly in t, with respect
to small perturbations in the vector measurements. Such a property
is easily proven for a simple algorithm such as TRIAD.

Theorem 4: Suppose that the vector bias estimation is combined
with the attitude and gyro bias estimation. Under the conditions
of Theorems 2 and 3, limt→∞ ‖((I − R̃), b̃g, θ̃)‖ = 0 for all initial
conditions such that R̂(0) ∈ SO(3), b̂g(0) ∈ B̂g, and θ̂(0) ∈ R4.

Proof (Outline): The error b̃ jv vanishes as t → ∞ so that v̄b∗
j

approaches the unbiased vector v̄b
j . Let therefore k be an integer

chosen large enough that for all t ≥ kτ , ‖v̄b∗
j − v̄b

j‖ ≤ µ , where µ > 0
is a constant to be determined. In particular, we choose µ small
enough that ‖vb

j + b̃ jv‖ ≥ η and that the algebraic solution used in
the resetting strategy is well-defined.

Suppose first that J(R̂(kτ)) ≤ δ , so that no reset occurs at this
time. Since J(R̂) is continuous (uniformly in t), with respect to the
vector measurements, we can show that there exists a µ1 such that
if µ ≤ µ1, J(R̂) ≤ δ =⇒ |s̃| ≥ ε . Since V̇ is continuous (uniformly
in t) with respect to the vector measurements, there exists a µ2 > 0
such that if µ ≤ µ2, |s̃|= ε =⇒ V̇ < 0, and hence |s̃| cannot become
smaller than ε before the time t = (k+1)τ . The derivative Ẇ is also
continuous (uniformly in t) with respect to the vector measurements,
and hence we obtain the inequality Ẇ ≤−αW +ρµ (t), where ρµ (t)
is a small perturbation with a bound that vanishes as µ→ 0. Applying
the comparison lemma we find that the trajectory of W deviates from
the unperturbed trajectory on the interval [kτ,(k+1)τ] by an amount
that can be made arbitrarily small by decreasing µ . It is therefore
straightforward to show that there exists a µ3 > 0 such that if µ ≤ µ3,
‖r̃((k+1)τ)‖ < δ/(2n)−ν , where ν > 0 is a small number. Again
using continuity of J(R̂), we can show that there exists a µ4 > 0
such that if µ ≤ µ4, ‖r̃‖ < δ/(2n)− ν =⇒ J(R̂) < δ . Hence, no
reset occurs at time t = (k+ 1)τ , and by induction, no resets occur
at any future point in time. Again using Ẇ ≤ −αW + ρµ (t) and
noting that ρµ (t)→ 0 as t → ∞, we find that W → 0, and therefore
((I− R̃), b̃g)→ 0 as t→∞. Next, suppose that J(R̂(kτ))> δ , so that
a reset occurs. Due to the local continuity of R∗, there exists a µ5
such that if µ ≤ µ5, |s̃| ≥ ε after the reset. By the argument above,
we therefore have ((I− R̃), b̃g)→ 0, as t→ ∞.

VII. EXAMPLE

We illustrate the results of the note by using a recorded data set
from a remotely controlled helicopter equipped with accelerometers
and gyros (providing data at 100 Hz), magnetometers (10 Hz), and
a GPS receiver (5 Hz). Body-fixed vectors are provided by the
magnetometers and accelerometers; reference vectors are provided
by the earth’s magnetic field and a filtered derivative of the GPS

velocity (the latter being highly time-varying). We emphasize that
this example is intended as an illustration based on a single data set,
and not a performance evaluation.

The attitude and gyro bias observer is implemented at 100 Hz
using forward Euler discretization, with tuning parameters k1 = k2 = 1
and kI = 0.2. The attitude is maintained as a quaternion, which is
normalized at each time step to compensate for numerical errors.
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Fig. 1. Results from helicopter example

The accelerometer bias is estimated using discrete-time recursive least
squares, with Γ(0) = 10I. Resetting is implemented with τ = 2 s and
δ = 0.4 and the resetting value computed via QUEST.

Figs. 1(a)–(c) show the estimates of bias and attitude together
with reference estimates from an EKF running online (no independent
reference is available, and thus the purpose is not to benchmark the
two approaches). Initially, the estimates are highly inaccurate, due
primarily to very significant accelerometer biases, but also inaccurate
initial values. Consequently, 4 resets occur within the first 10 seconds,
which helps to improve the convergence time. The accelerometer
biases in the EKF have been pre-calibrated through lab experiments
and have had time to stabilize prior to the displayed time window.
As the bias estimates improve, the estimates gradually fall into
alignment with the EKF. To illustrate the benefit of integrating vector
and gyro measurements, Fig. 1(d) shows the QUEST solution based
on magnetometer measurements and bias-compensated accelerometer
measurements (with the same reference vectors as in the observer).
Much of the noise seen in the QUEST solution can be attenuated by
more heavy low-pass filtering; however, this would come at the cost
of increased phase lag.

APPENDIX

Let the set of possible parameters be defined by Bg := {bg ∈
R3 |P(bg) ≤ 0}, where P : R3 → R is a smooth, convex func-
tion with gradient ∇PT. Let B0

g denote the interior of Bg,

and let B̂g be defined by B̂g = {b̂g ∈ R3 | P(b̂g) ≤ δ}, where
δ is a small positive number, making B̂g a slightly larger su-
perset of Bg. Then Proj(b̂g,−kIσ) = p(b̂g,−kIσ)(−kIσ), where
p(b̂g,−kIσ)= I if b̂g ∈B0

g or ∇PT ·(−kIσ)≤ 0; and p(b̂g,−kIσ)=

I−min{1,P(b̂g)/δ}∇P∇PT/‖∇P‖2 if b̂g ∈ B̂g \B0
g and ∇PT ·

(−kIσ)> 0.
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[23] M. Krstić, I. Kanellakopoulos, and P. V. Kokotović, Nonlinear and
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